Remove, then Revert: Static Point cl oud Map Construction using Multiresolution Range Images

Soojin Woo

Contents

- Introduction
- Related Work
- Methodology
- Experimental Results
- Conclusion
- Q&A

Introduction

Remove, then Revert: Static Point cloud Map Construction Using Multiresolution Range Images

Giseop Kim¹, Ayoung Kim^{1*}

KAIST

- Title: Remove, then Revert: Static Point cloud Map Construction using Multiresolution Range Images
- Authors: Giseop Kim, Ayoung Kim
- Published in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020
- Citation: 57

• Leaving only static points and excluding dynamic objects is a critical problem in various

robust robot missions in changing outdoors

- Leaving only static points and excluding dynamic objects is a critical problem in various robust robot missions in changing outdoors
- The main SLAM strategy relies on static objects while rejecting dynamic objects.

- Leaving only static points and excluding dynamic objects is a critical problem in various robust robot missions in changing outdoors
- The main SLAM strategy relies on static objects while rejecting dynamic objects.

- Leaving only static points and excluding dynamic objects is a critical problem in various robust robot missions in changing outdoors
- The main SLAM strategy relies on static objects while rejecting dynamic objects.

• Range image-based map point discrepancy calculation.

- Range image-based map point discrepancy calculation.
- A novel remove-then-revert mechanism to construct and enhance a static map.
 - 1) Retain definite static points 2) Recover comparatively uncertain static points (Iteratively)

- Range image-based map point discrepancy calculation.
- A novel remove-then-revert mechanism to construct and enhance a static map.
 - 1) Retain definite static points 2) Recover comparatively uncertain static points (Iteratively)
- Multiresolution range image-based static map evolution

- Range image-based map point discrepancy calculation.
- A novel remove-then-revert mechanism to construct and enhance a static map.
 - 1) Retain definite static points 2) Recover comparatively uncertain static points (Iteratively)
- Multiresolution range image-based static map evolution

strongly erase dynamic points

- Range image-based map point discrepancy calculation.
- A novel remove-then-revert mechanism to construct and enhance a static map.
 - 1) Retain definite static points 2) Recover comparatively uncertain static points (Iteratively)
- Multiresolution range image-based static map evolution

strongly erase dynamic points

reverse falsely removed points

- Range image-based map point discrepancy calculation.
- A novel remove-then-revert mechanism to construct and enhance a static map.
 - 1) Retain definite static points 2) Recover comparatively uncertain static points (Iteratively)
- Multiresolution range image-based static map evolution

strongly erase dynamic points

reverse falsely removed points

Related Work

Visibility-based approaches

- Visibility-based approaches
 - Alleviate computational burden of conventional approaches
 - Associates a query point and a map point within a same field of view (FOV) to conclude static

Point cloud segmentation-based approaches

- Point cloud segmentation-based approaches
 - Exclude segment points which are labeled as dynamic.
 - Rely on supervised labels (vulnerable to human error or unknown classes)

Solving motion ambiguities

- Solving motion ambiguities
 - Undistort a LiDAR scan for dynamic object detection
 - Use multi-scaled range images (In this paper)

Methodology

A. Problem definition (Notations)

• Aim: Given a point cloud map, *remove dynamic points* within the map to build a

static map

A. Problem definition (Notations)

- Aim: Given a point cloud map, <u>remove dynamic points</u> within the map to build a static map
- M: global map coordinate
- Q: local sensor's coordinate
- P^Q : single scan of local sensor, P^M : submap within the global coordinate

• Compare query point cloud P_k^Q (k: index of frame) and P^M to remove dynamic

objects from map points.

- Compare query point cloud P_k^Q (k: index of frame) and P^M to remove dynamic objects from map points.
- During this comparison, divide the target map into two mutually exclusive subsets.

- Compare query point cloud P_k^Q (k: index of frame) and P^M to remove dynamic objects from map points.
- During this comparison, divide the target map into two mutually exclusive subsets.

$$P^M = P^{SM} \cup P^{DM} \tag{1}$$

$$P^{SM} \cap P^{DM} = \emptyset \tag{2}$$

- Compare query point cloud P_k^Q (k: index of frame) and P^M to remove dynamic objects from map points.
- During this comparison, divide the target map into two mutually exclusive subsets.

$$P^{M} = P^{SM} \cup P^{DM}$$
(1)
$$(P^{SM}) \cap (P^{DM}) = \emptyset$$
(2)
set of static points set of dynamic points

- Initially, estimate \hat{P}^{SM} and \hat{P}^{DM} using conventional segmentation methods
- $\hat{P}^{SM} = TP \cup FP$ and $\hat{P}^{DM} = TN \cup FN$

* \hat{P} denotes estimation

- Initially, estimate \hat{P}^{SM} and \hat{P}^{DM} using conventional segmentation methods
- $\hat{P}^{SM} = TP \cup FP$ and $\hat{P}^{DM} = TN \cup FN$
- P (Positive): static status, N (Negative): dynamic status

True Positive	False Positive	\hat{P}^{SM}	True Positive	False Positive
False Negative	True Negative	\hat{P}^{DM}	False Negative	True Negative
Static	Dynamic			

• Main Idea: Detect FN points from \hat{P}^{DM} and move them to \hat{P}^{SM} (interatively)

- Main Idea: Detect FN points from \hat{P}^{DM} and move them to \hat{P}^{SM} (interatively)
- $\hat{P}^{SM} = TP \cup FP$ and $\hat{P}^{DM} = TN \cup FN$

True Positive	False Positive	
False Negative	True Negative	
Static	Dynamic	

• Main Idea: Detect FN points from \hat{P}^{DM} and move them to \hat{P}^{SM} (interatively)

• Main Idea: Detect FN points from \hat{P}^{DM} and move them to \hat{P}^{SM} (interatively)

• Pipeline of the proposed static map construction method

*BR: Batch Removal

• Pipeline of the proposed static map construction method

A. Problem definition

• Pipeline of the proposed static map construction method

A. Problem definition

• Pipeline of the proposed static map construction method

*BR: Batch Removal

A. Problem definition

• Pipeline of the proposed static map construction method

ARIL

• Detect discrepancies by varying the range image's resolution

- Detect discrepancies by varying the range image's resolution
- The color map shows the distance (blue: closer, red: further away)

- Detect discrepancies by varying the range image's resolution
- The color map shows the distance (blue: closer, red: further away)

- Detect discrepancies by varying the range image's resolution
- The color map shows the distance (blue: closer, red: further away)

- Detect discrepancies by varying the range image's resolution
- The color map shows the distance (blue: closer, red: further away)

High (fine) resolution range image (0.4° for a pixel)

- Detect discrepancies by varying the range image's resolution
- The color map shows the distance (blue: closer, red: further away)

High (fine) resolution range image (0.4° for a pixel)

Low (coarse) resolution range image (1° for a pixel)

• red pixels I_k^{Diff} represent a high discrepancy between a query scan and a map

• red pixels I_k^{Diff} represent a high discrepancy between a query scan and a map

• Project map into a fixed-size range image using transformation

- Project map into a fixed-size range image using transformation
- Visibility of map points is calculated via their matrix element-wise subtraction

•
$$I_k^{Diff} = I_k^Q - I_k^M$$
(3)

- Project map into a fixed-size range image using transformation
- Visibility of map points is calculated via their matrix element-wise subtraction

$$I_k^{Diff} = I_k^Q - I_k^M$$
 (3)

• Assign a map point as dynamic if its corresponding pixel value of I_k^{Diff} is larger than a certain threshold τ_D

- Project map into a fixed-size range image using transformation
- Visibility of map points is calculated via their matrix element-wise subtraction

• $I_k^{Diff} = I_k^Q - I_k^M$ (3)

- Assign a map point as dynamic if its corresponding pixel value of I_k^{Diff} is larger than a certain threshold τ_D
 - Definition of dynamic map points

$$P_k^{DM} = \{ p_{k,ij}^M | \text{ its associated } I_{k,ij}^{Diff} > \tau_D \}$$
(4)

• Definition of static map points

$$P_k^{SM} = P_k^M - P_k^{DM} \tag{5}$$

• BR: Batch Removal

• BR: Batch Removal

- BATCHREMOVAL
 - 1. Perform a range image-based dynamic map point detection for each scan P_k^Q ($k = 1, \dots, N$)

- BATCHREMOVAL
 - 1. Perform a range image-based dynamic map point detection for each scan P_k^Q ($k = 1, \dots, N$)
 - 2. Count the total number marked as SM or DM for every single point in the map
 - n_{SM} : number of points marked as SM
 - n_{DM} : number of points marked as DM

- BATCHREMOVAL
 - Dynamic map $P^{DM} \subset P^M$ is defined using a staticity score $s(\cdot)$

- BATCHREMOVAL
 - Dynamic map $P^{DM} \subset P^M$ is defined using a staticity score $s(\cdot)$

•
$$s(\cdot) \coloneqq \alpha_{SM} n_{SM}(p^M) + \alpha_{DM} n_{DM}(P^M)$$
 (6)

•
$$P^{DM} = \{p^M | s(p^M) < \tau_s\}$$
 (7)

- BATCHREMOVAL
 - Dynamic map $P^{DM} \subset P^M$ is defined using a staticity score $s(\cdot)$

•
$$s(\cdot) \coloneqq \alpha_{SM} n_{SM}(p^M) + \alpha_{DM} n_{DM}(P^M)$$
 (6)

•
$$P^{DM} = \{p^M | s(p^M) < \tau_s\}$$
 (7)

positive weight coefficient

negative weight coefficient

- BATCHREMOVAL
 - Dynamic map $P^{DM} \subset P^M$ is defined using a staticity score $s(\cdot)$
 - $s(\cdot) \coloneqq \alpha_{SM} n_{SM}(p^M) + \alpha_{DM} n_{DM}(P^M)$ (6)
 - $P^{DM} = \{p^M | s(p^M) < \tau_s\}$ (7)
 - Static map is defined as the complement of P^{DM}

•
$$P^{SM} = P^M - P^{DM}$$
(8)

positive weight coefficient

negative weight coefficient

Static Map Constructor 1.

Static Map Constructor 1.

From high resolution to low resolution

• Section C uses a *single fixed-size resolution* range image

- Section C uses a *single fixed-size resolution* range image
- Problem) Estimated dynamic points may include static points

- Section C uses a *single fixed-size resolution* range image
- Problem) Estimated dynamic points may include static points
- Solution) Use *multiple range images* having different resolutions

- Section C uses a *single fixed-size resolution* range image
- Problem) Estimated dynamic points may include static points
- Solution) Use *multiple range images* having different resolutions
 - 1. A point marked as dynamic in the past iteration could be marked as static

- Section C uses a *single fixed-size resolution* range image
- Problem) Estimated dynamic points may include static points
- Solution) Use *multiple range images* having different resolutions
 - 1. A point marked as dynamic in the past iteration could be marked as static

- Section C uses a *single fixed-size resolution* range image
- Problem) Estimated dynamic points may include static points
- Solution) Use *multiple range images* having different resolutions
 - 1. A point marked as dynamic in the past iteration could be marked as static
 - 2. Then *Revert* its status and merge the point into the static map

- Section C uses a *single fixed-size resolution* range image
- Problem) Estimated dynamic points may include static points
- Solution) Use *multiple range images* having different resolutions
 - 1. A point marked as dynamic in the past iteration could be marked as static
 - 2. Then *Revert* its status and merge the point into the static map
 - \rightarrow Iteratively reduces the number of FN points which are actually static.

Experimental Results

A. Experimental Setups

• Ground truth static map preparation

A. Experimental Setups

- Ground truth static map preparation
 - Using KITTI scans and SemanticKITTI instance labels, they constructed a moved-objectsexcluded map (~static map)
A. Experimental Setups

- Ground truth static map preparation
 - Using KITTI scans and SemanticKITTI instance labels, they constructed a moved-objectsexcluded map (≈static map)
 - Omitted gray points from ground truth map to prevent containing some dynamic points

A. Experimental Setups

- Ground truth static map preparation
 - Using KITTI scans and SemanticKITTI instance labels, they constructed a moved-objectsexcluded map (~static map)
 - Omitted gray points from ground truth map to prevent containing some dynamic points

A. Experimental Setups

• Ground truth static map preparation

Ground truth map

 Static map based on SemanticKITTI shows limitation of human labeling by loosing some static points within the dynamic-removed map.

- Static map based on SemanticKITTI shows limitation of human labeling by loosing some static points within the dynamic-removed map.
- Removert shows the consistent removing and preserving performance compared to human labeling method.

- Static map based on SemanticKITTI shows limitation of human labeling by loosing some static points within the dynamic-removed map.
- Removert shows the consistent removing and preserving performance compared to human labeling method.

loses some static points within the dynamic-removed map

 Validated independence of the LiDAR configuration by evaluating over the MulRan dataset which were created using Ouster (↔ Kitti dataset: Velodyne)

 Validated independence of the LiDAR configuration by evaluating over the MulRan dataset which were created using Ouster (\leftrightarrow Kitti dataset: Velodyne)

MulRan dataset (OS1-64)

 Validated independence of the LiDAR configuration by evaluating over the MulRan dataset which were created using Ouster (↔ Kitti dataset: Velodyne)

MulRan dataset (OS1-64)

Kitti dataset (HDL-64E)

The KITTI Vision

• Removert algorithm

- Removert algorithm
 - 1) radically removes ambiguous points from the original noisy map

- Removert algorithm
 - 1) radically removes ambiguous points from the original noisy map
 - 2) iteratively recovers the true positive points

• history of the number of TP, FP, and FN points along the iteration

ARIL

• history of the number of TP, FP, and FN points along the iteration

• history of the number of TP, FP, and FN points along the iteration

Conclusion

• Proposed a novel method to recover the false predictions in a dynamic map and simultaneously enhance a static map.

Conclusion

- Proposed a novel method to recover the false predictions in a dynamic map and simultaneously enhance a static map.
- Provided various qualitative and quantitative analysis using KITTI dataset by proving the capability of removing dynamic points.

Q&A

Appendix

B. Range image-based map comparison

- During the projection, they use a range image of particular resolution
 - ex) a single pixel represents 1° for both horizontal and vertical FOV
- They call this FOV-restricted and sampled map point cloud a "visible map point cloud" (P_k^M)
- A visible map point cloud P_k^M is defined as its equivalent range image $I_k^M = (I_{k,ij}^M) \in \mathbb{R}^{m \times n}$
 - *m*, *n*: number of pixels

$$I_{k,ij}^{M} = \min_{p \in P_{ij}^{M}} r(p) \ (r(\cdot): \text{ a range of a point } p \in R^{3})$$

$$P_k^M = \{p_{k,ij}^M = \operatorname*{argmin}_{p \in P_{ij}^M} r(p)\}$$